`timm` is a deep-learning library created by Ross Wightman and is a collection of SOTA computer vision models, layers, utilities, optimizers, schedulers, data-loaders, augmentations and also training/validating scripts with ability to reproduce ImageNet training results.


pip install timm

Or for an editable install,

git clone https://github.com/rwightman/pytorch-image-models
cd pytorch-image-models && pip install -e .

How to use

Create a model

import timm 
import torch

model = timm.create_model('resnet34')
x     = torch.randn(1, 3, 224, 224)

It is that simple to create a model using timm. The create_model function is a factory method that can be used to create over 300 models that are part of the timm library.

To create a pretrained model, simply pass in pretrained=True.

pretrained_resnet_34 = timm.create_model('resnet34', pretrained=True)
Downloading: "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet34-43635321.pth" to /Users/amanarora/.cache/torch/hub/checkpoints/resnet34-43635321.pth

To create a model with a custom number of classes, simply pass in num_classes=<number_of_classes>.

import timm 
import torch

model = timm.create_model('resnet34', num_classes=10)
x     = torch.randn(1, 3, 224, 224)
torch.Size([1, 10])

List Models with Pretrained Weights

timm.list_models() returns a complete list of available models in timm. To have a look at a complete list of pretrained models, pass in pretrained=True in list_models.

avail_pretrained_models = timm.list_models(pretrained=True)
len(avail_pretrained_models), avail_pretrained_models[:5]

There are a total of 271 models with pretrained weights currently available in timm!

Search for model architectures by Wildcard

It is also possible to search for model architectures using Wildcard as below:

all_densenet_models = timm.list_models('*densenet*')